User Tools

Site Tools


software

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

software [2025/04/08 00:47] – created nshegunovsoftware [2026/01/08 23:35] (current) – removed nshegunov
Line 1: Line 1:
-====== Cluster Hardware Overview ====== 
- 
-This page provides an overview of the hardware and partitions available on the cluster. The cluster is equipped with modern Intel CPUs and NVIDIA GPUs to support a wide range of high-performance and GPU-accelerated workloads. 
- 
-===== Partitions ===== 
- 
-The cluster is divided into several partitions, each with different CPU and GPU resources. All partitions currently have **no time limit** for running jobs. 
- 
-^ Partition ^ CPU Cores (Threads) ^ GPU(s)                  ^ Notes ^ 
-| **unite**   | Up to 192 (384)         | 5 x NVIDIA Tesla T4      | General-purpose, high-throughput jobs | 
-| **gpu_nm**  | Up to 32 (64)           | 1 x NVIDIA Tesla T4      | GPU-accelerated jobs, smaller scale  | 
-| **gpu_ai**  | Up to 192 (384)         | 5 x NVIDIA Tesla T4      | AI/ML workloads,  high-performance     | 
-| **a40**     | Up to 64 (128)          | 2 x NVIDIA A40            | AI/visualization,  GPU-intensive   | 
- 
-===== CPU Specifications ===== 
- 
-The cluster features several generations of high-performance Intel Xeon processors. 
- 
-  * **8 x Intel(R) Xeon(R) Gold 6148 @ 2.40GHz** 
-    - 20 cores / 40 threads per CPU 
-    - Suitable for parallel and memory-intensive tasks 
- 
-  * **2 x Intel(R) Xeon(R) Gold 6142 @ 2.60GHz** 
-    - 16 cores / 32 threads per CPU 
-    - Higher base frequency for faster single-thread performance 
- 
-  * **2 x Intel(R) Xeon(R) Platinum 8358 @ 2.60GHz** 
-    - 32 cores / 64 threads per CPU 
-    - High core density for large parallel workloads 
- 
-===== GPU Specifications ===== 
- 
-The cluster supports GPU-accelerated workloads using NVIDIA Tesla and A40 GPUs. 
- 
-  * **5 x NVIDIA Tesla T4** 
-    - 16 GB GDDR6 memory 
-    - Optimized for inference and lightweight training 
-    - Supported in `unite`, `gpu_nm`, and `gpu_ai` partitions 
- 
-  * **2 x NVIDIA A40** 
-    - 48 GB GDDR6 memory each 
-    - Excellent for large model training, rendering, and visualization 
-    - Available in the `a40` partition 
- 
-===== Summary ===== 
- 
-This cluster provides a flexible and powerful environment for both CPU and GPU workloads. The modular partition setup allows users to select resources best suited for their tasks, whether that’s compute-heavy simulations, AI training, or smaller-scale GPU processing. 
  
software.1744062444.txt.gz · Last modified: 2025/04/08 00:47 by nshegunov

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki